Introduction to
the theory of distributions

F.G. FRIEDLANDER

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge

with additional material by

M. Joshi

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge

CAMBRIDGE

UNIVERSITY PRESS




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK  http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA  http://www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1982, 1998

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1982
Second edition 1998

Typeset in Times [VN]
A catalogue record for this book is available from the British Library

ISBN 0 521 64015 6 hardback
ISBN 0 521 64971 4 paperback

Transferred to digital printing 2003



1.1
1.2
1.3
14
1.5

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.2

4.1
4.2
4.3

CONTENTS

Preface
Introduction

Test functions and distributions
Some notations and definitions
Test functions

Distributions

Localization

Convergence of distributions
Exercises

Differentiation, and multiplication by smooth functions
The derivatives of a distribution

Some examples

A distribution obtained by analytic continuation
Primitives in 2'(R)

Product of a distribution and a smooth function

Linear differential operators

Division in 2'(R)

Duality

Exercises

Distributions with compact support

Continuous linear forms on €~ (X), and distributions with
compact support

Distributions supported at the origin

Exercises

Tensor products

Test functions which depend on a parameter
Affine transformations

The tensor product of distributions
Exercises

ix

—

[

13
15

17
17
18
20
22
23
25
27
29
30

34
34

36
39

40
40
42
44
48



5.1
5.2
5.3
54

6.1
6.2
6.3

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3

10
10.1
10.2
10.3
104

11
11.1
11.2
113
11.4
11.5

Contents

Convolution

The convolution of two distributions

Regularization

Convolution of distributions with non-compact supports
Fundamental solutions of some differential operators
Exercises

Distribution kernels

Schwartz kernels and the kernel theorem
Regular kernels

Fundamental kernels of differential operators
Exercises

Coordinate transformations and pullbacks
Diffeomorphisms

The pullback of a distribution by a function
The wave equation on R?

Exercises

Tempered distributions and Fourier transforms
Introduction

Rapidly decreasing test functions

Tempered distributions

The convolution theorem

Poisson’s summation formula, and periodic distributions
The elliptic regularity theorem

Exercises

Plancherel’s theorem, and Sobolev spaces
Hilbert space

The Fourier transform on L,(R™)
Sobolev spaces

Exercises

The Fourier-Laplace transform

Analytic functions of several complex variables
The Paley-Wiener-Schwartz theorem

An application to evolution operators

The Malgrange-Ehrenpreis theorem

Exercises

The calculus of wavefront sets

Definitions

Transformations of wavefront sets under elementary operations
Push-forwards and pull-backs

Wavefront sets and Schwartz kernels

Propagation of singularities

Exercises

vi

50
50
53
55
59
65

68
68
73
76
78

80
80
81
85
88

90
90
93
96
101
104
108
110

114
114
116
120
126

128
128
130
134
139
142

144
144
148
154
157
159
160



Contents

Appendix: topological vector spaces
Bibliography
Notation

Index

vii

162

170

171
173



INTRODUCTION

The theory of distributions is a generalization of classical analysis, which makes
it possible to deal in a systematic manner with difficulties which previously
had been overcome by ad hoc constructions, or just by pure hand waving. In
fact, it does a good deal more: it provides a new and wider framework, and
a more perspicuous language, in which one can reformulate and develop classical
problems. Its influence has been particularly pervasive and fruitful in the theory
of linear partial differential equations.

Let us consider some examples. If (x, £) €R?, then

u=fx++egx—1
satisfies d’Alembert’s equation

*u  d%u 3
a
provided that the functions f and g are twice differentiable. This restriction
is both irksome and unnatural in many instances. It can be overcome by intro-

ducing so-called weak solutions. By definition, these are functions u such that

a2 32
J‘u(—qs——'f)dxdt=0
ot ax?

>

for all sufficiently ‘good’ functions ¢, for example for ¢ €C?(R?), the class of
twice continuously differentiable functions that vanish on the exterior of
a bounded set.

Again, if x €R3, then the Newtonian potential

u(x) = ) &
lx =yl
satisfies Poisson’s equation
Au =—4qf

if the density function f is, for example, continuously differentiable. But it may
not possess second order derivatives when f is merely continuous. Yet, it is then
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continuously differentiable and obeys Gauss’s law that the flux of the field
across a closed surface S is proportional to the matter enclosed by S. This
difficulty can also be avoided by working with weak solutions of Poisson’s
equation. Furthermore, if one replaces f by the Dirac delta ‘function’, one
obtains u = 1/]x| =(x? + x% + x%)7'/2 when x #0, which is the potential due
to a particle at the origin. It is suggestive to express this by writing

AQ1/)x]) = —4n8(x).

But this has to be interpreted; for example, one can take it to mean that

f 290 b = —amp(0)

[x]

for all ‘good’ functions, say for all &€ C2?(R?).

In all these cases, the difficulties and ambiguities disappear when the equations
are read in terms of distributions. In the theory of distributions, functions are
replaced by linear forms on an auxiliary vector space, whosé members are called
test functions. Recall that, if V is a vector space over the field C of complex
numbers, then a linear form on V is a homomorphism V= C. The linear forms
on V are made into a vector space Hom (¥, C) in the obvious way: {cu, ¢ =c{u, ¢)
ifceCand u€Hom(V, C), and (u + v, ¢y =(u, ¢)+{v, ¢ if u, vEHom (V, C),
where ¢ € V in each case. In distribution theory, the basic space of test functions
is C7(R™); its members are (complex valued) functions on R” which possess
continuous derivatives of all orders, and vanish outside some bounded set. The
notations C (R"), and L. Schwartz’s original Z(R"), are also used.

A continuous function f: R” » C determines a linear form on C.°(R") by the
rule

<f,¢>=f fodx, ¢E€CI(R"). @
R?

Conversely, it can (and will) be shown that this linear form determines f uniquely
so that the space of continuous functions on R” can be identified with a subspace
of Hom (C;°(R™),C). If the function fis also continuously differentiable, then
the linear forms on C;°(R") determined by its derivatives are, by (1) and an
integration by parts,

of 3x;, ¢ = f 0(8f x;) dx = — f F(a0/ox;) dx.

i=1,...,n,¢€CTR").
Thus, fori=1,...,n,

Of [ox;, ¢y =—(f, 0¢/dx), SECT(R"). 2
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But this makes sense for any linear form on C,°(R"), and so provides a defini-
tion of the derivatives of such a form. As one can iterate (2), one thus obtains
(generalized) derivatives of all orders.

Multiplication by smooth (infinitely differentiable) functions can also be
defined by analogy with the special case (1); one simply puts

(fu,y=Au,fe), ¢E€C(R"). (3)
By combining (2) and (3), one can thus account for the action of any linear
differential operator with smooth coefficients on Hom (C."(R"),C).

There is one other essential ingredient. The class of distributions is not the
whole of Hom (C;°(R"),C): it is the subspace consisting of continuous linear
forms. To say this, presupposes that C, (R"™) has been equipped with an appro-
priate topology. The choice of this topology is, in fact, a cardinal feature of
the theory of distributions. To define it, and to explore its implications, one
must appeal to the theory of locally convex topological vector spaces. However,
the course adopted in this book is to specify a certain set of inequalities which
a linear form on C°(R") must satisfy in order to qualify as a distribution.
Once these are granted, the theory can be built up systematically and logically.
But, so as to give some idea of what is involved, to readers who either do not
have the time, or the inclination, to go into this more fully, a sketch of the
functional-analytic background is given as an Appendix at the end of the book.
This can be omitted, and the reader who does so should also ignore references
to topological vector spaces in the text.



